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Design of experiments for predictive microbial modeling 
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SUMMARY 

Good predictive microbial models can be built with appropriate data from well-designed experiments. Anyone setting up an experiment should consider 
the sources of variability, possible screening experiments, optimum spacing between points on a continuous scale, and the most appropriate type of design, 
e.g. factorial, screening, or central composite. 

INTRODUCTION 

In order to use time and resources to the best advantage, 
it is essential that all experiments have clear aims. The 
two most common aims are (i) understanding and (ii) 
optimization, which can have conflicting experimental 
requirements. 

Sometimes the concern is to know which out of many 
factors affect the growth of certain microbes. At other times, 
interest may center in a small number of factors, but with 
the desire to know more precisely how these factors influence 
growth either singly or in combination with each other. 
In both these cases the aim is obviously to achieve 
understanding. 

Other situations can arise where it is necessary to 
find an optimum or near optimum set of conditions for 
preservation or growth. For these situations it is not essential 
to have complete understanding over a wide region, but just 
enough information at or around the optimum to be able 
to predict it well. 

Variability 
To avoid misleading conclusions and to get the best out 

of any experiment it is essential to design it well, and this 
includes controlling as much as possible. It is therefore 
necessary to know what sources of variability will influence 
the final result other than the factors which are of specific 
interest. 

Variation can occur between different strains of the same 
bacterium. It can also be due to previous bacterial history, 
such as time spent in stationary phase, or time spent at a 
certain pH, temperature, or salt level. Bacteria can grow in 
slightly different ways on different batches of media. 

It is generally desirable to make conservative predictions 
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(i.e. ones that err on the side of safety), and for this reason 
it is best to perform experiments using a cocktail of strains. 
Alternatively if understanding of microbial behavior is 
desired it is best to use a single strain. 

Variation can occur not only between different batches 
of raw material, but between different samples from the 
same batch. A sample may not be homogeneous. For 
example, dried material that has been shaken will generally 
have larger particles at the top, and smaller ones at the 
bottom. 

The process of dilution, involving as it does, a pattern 
of mixing and sampling several times, can increase the 
variability at each stage, and is a factor that contributes to 
the lognormal distribution of results that are obtained from 
plate counts. 

Last, but not least, it has often been observed that 
different experimenters performing essentially the same 
experiment can get different results, particularly where 
operations such as pipetting, spreading and counting are 
done manually. Consistent results within an experiment or 
across a series of experiments can therefore be achieved 
more easily if a given task is performed by the same person 
each time. 

Factorial designs 
A common aim is to find out how microbes grow when 

there are several influential factors. One way of approaching 
the problem is to take each factor in turn and see how the 
growth pattern changes as that factor is varied. An alternative 
is to consider all the factors simultaneously, looking at 
appropriate combinations of them. The latter approach 
makes it possible to find out whether the factors interact, 
and by how much. The following figures illustrate where 
these interactions are important. 

Consider the situation where two factors X and Y 
influence the growth of bacteria in a given time. Figure 1 
illustrates the sort of results that could be obtained if 25 
experiments were performed. It will be seen that the results 
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Fig. 1. Factors X and Y do not interact. 

all lie on a plane, i.e. a flat but sloping surface. These sort 
of results can be explained by an additive model in which 
X and Y do not interact. If it were known there was no 
interaction it would have been sufficient to take each factor 
in turn and keep it constant while varying the other one 
(e.g. take X = 1 and vary Y from 1 to 5, then take Y = 1 
and vary X from 1 to 5). The results from these experiments 
would be sufficient to predict all the others. 

Figures 2 and 3 show examples of interactions that could 
occur. Figure 2 illustrates 25 results that may arise from 
combinations of factors X and Y. If an experiment were 
performed fixing X = 1 and varying Y from 1 to 5, a fairly 
shallow response would be seen. A similar picture would be 
seen by fixing Y = 1 and varying X. What would not be 
found from this one-factor-at-a-time approach is that X and 

Y act synergistically and give a much higher response than 
expected if increased together. 

Adopting the one-factor-at-a-time approach in Fig. 3 
would lead to an overestimate of the effect of increasing X 
and Y simultaneously. Both of these examples show clearly 
the benefit of varying the factors simultaneously. 

Confounded designs 
A confounded design is one where two effects cannot be 

separated, e.g. two samples containing bacteria are to be 
compared but the first is assessed by one person, and the 
second by another. If there is an apparent difference it is 
impossible to deduce from the figures whether the samples 
or the two people's techniques are different. For this reason, 
it is important to ensure that conditions are consistent 
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Fig. 2. Factors X and Y interact, example 1. 
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Fig. 3. Factors X and Y interact, example 2. 
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throughout each experiment. Results can then be interpreted 
more easily and with more confidence. 

Screening designs 
When there are a lot of factors that might influence our 

results, and it is not apparent which are important, it is 
advisable to do an experiment in order to find this out. A 
large factorial trial would yield this information, but it would 
take a lot of resources. Instead it would be better to do a 
small subset of the complete factorial, and initially as small 
a subset as possible. There is a class of designs called 
fractional factorial designs which are admirably suited to 
this. Consider the situation where there are three factors 
which each have three levels of interest. Using all the 
combinations in an experiment would entail using 33 = 27 
combinations. Instead, just a third of them could be used, 
from which could be derived information on the main effect 
of each of the factors. 

Figure 4 shows how to select a subset of 9 out of 27 
combinations in the situation where there are three pHs (A, 
B,C), three different temperatures, and three levels of salt. 
This type of a fractional factorial is often called a latin 
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Fig. 4. Example of latin square. 

square. It can be seen that each pH occurs in every row 
and every column. 

Whenever any design is used it should be randomized so 
that an experiment is not going to be conducted in exactly 
the same order as on a previous occasion. In the case of 
latin squares, a suitable one should be taken at random. 
The rows should then be randomized, followed by a 
randomization of the columns. The result will still be a latin 
square, so the essential nature of the design will be preserved. 
It must be noted that fractional factorial designs will not 
allow estimation of all the interactions. The smaller the 
design, the fewer interactions that can be estimated. 

Figure 5 shows an example of a design in which there 
are seven factors A-G,  each at two levels, which for 
convenience are called low and high. The design consists of 
just eight out of the 27 = 128 possible combinations which 
could have been studied. Each combination in the design is 
carried out with some of the factors at the low level and 
others at the high one. The diagram contains a block to 

indicate that factor is at the high level, and is blank where 
it is low. Thus it can be seen that the first experimental 
combination will be done with factors A, D, E, and F at 
high levels and the others at low levels. 

This particular design has the property that the overall 
effect of each factor can be found by taking the average 
result obtained from experiments where the factor is at a 
high level, and subtracting the average result where the 
factor is at a low level. 

Figure 6 shows some results from an experiment where 
this design was used, together with the computed effects of 
each factor (shown as an absolute value). It will be seen 
that factor E appears to have the most effect on the final 
results, followed by B and F. Only by doing significance 
tests can we tell whether any of these effects are statistically 
significant. In this case only factor E had a significant effect. 
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Fig. 5. Screening design with seven factors each at two levels. 
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Fig. 6. Design, results and effects. 

Screening experiments 
If a factorial design is being contemplated, but there is 

prior information on which combinations will give no 
information, these should be left out of the design and effort 
concentrated on the ones that are worthwhile. If the main 
experiment is concerned with bacterial growth as measured 
by plate counts, a screening experiment could be done 
looking at the simpler measurement of time to turbidity in 
order to determine which factor combinations are worthwhile 
in the main experiment. The main experiment may then 
become a partial factorial, such as is shown in Fig. 7. This 
example presumes that bacteria are known not to grow at 
low salt and temperatures when there is a high [H+]. These 
have therefore been excluded from the main experiment. 

Scale for design (explanatory variables) 
When choosing levels for design variables it is essential 

that they encompass the full range over which predictions 
are to be made, because extrapolation of results to any 
points outside could be dangerous. If an experiment is 
needed to investigate the effect of salt on the growth of 

microbes it is generally best to choose equal intervals of salt 
or water activity, whichever is considered most appropriate, 
e.g. salt levels of 1%, 2%, 3%, 4%. In the absence of any 
other information, this is a very reasonable thing to do, but 
if a greater change took place between salt levels of 2% 
and 3% than between any other levels, it could be of interest 
to look also at salt of 2.5%. 

This idea can be generalized by saying that where changes 
are taking place fastest, it is generally useful to have more 
levels (or observations). It is often considered that microbes 
react to pH, but it has been the experience at Colworth 
that they are actually reacting to the concentration of 
hydrogen ions. Therefore if it is desirable to look at the 
effect of pH, more useful information will be obtained 
from spacing the pH at intervals of equal hydrogen ion 
concentration rather than equal pH intervals. 

Similarly if population growth is measured with time, 
more information will be obtained for the same effort if 
intervals between cell counts are short for a rapidly growing 
population, and longer for a slower growing one. Also if 
the end of lag phase is to be estimated more precisely, it is 
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Fig. 7. Partial factorial screening out lethal combinations. 
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strongly advisable to take more counts around the time 
when this is expected to occur. Much of this is just common 
sense. 

Central composite designs 
It has been said that factorial designs are good for 

obtaining a broad understanding over a region of interest. 
If this is not desired, but an optimum of some sort is sought 
instead, the best design in this situation is a central composite 
design. An example of a central composite design in three 
dimensions is shown in Fig. 8. 

The design should be centered around the main region 
of interest, and the larger symbol in the center indicates 
that greater replication is needed there. The length of a unit 
step should be chosen to correspond to an equal expected 
change in response in each of the three directions. It can 
be seen that the exterior points lie roughly on a sphere, and 
the positions are ideally suited to the fitting of a generalized 
quadratic, or response surface equation, as it is sometimes 

called. It should be noted that the spherical nature of this 
design means that there are no points in the 'corners'  of the 
region. More information is being gained about the center 
of this region at the expense of the extremes, and as a result 
predictions have the greatest error farthest from the center. 
If however, there is an optimum as expected, it can be 
estimated quite well from the generalized quadratic equation. 

This type of design is ideal for the study of fermentation 
processes and vaccine production, where interest centers on 
obtaining optimal growth of bacteria. It is a poor design to 
use when trying to prevent proliferation of pathogenic 
microorganisms. 

G E N E R A L  STRATEGY 

A general strategy for experimental design with several 
factors should include the following: 

(1) Define experimental objective. 
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(2) List all the possible factors. 
(3) Design a screening experiment to determine which 

factors are the most important. 
(4) Follow up, if necessary, with a screening experiment to 

determine the most appropriate range for these factors, 
e.g. measure time to turbidity. 

(5) Choose a central composite design (to find an optimum) 
or factorial design (to improve overall understanding). 

modeling. It has only scratched the surface of a very large 
subject on which there are many excellent books. Those 
who wish to pursue this interest would benefit from reading 
Box et al. [1], who cover basic concepts and methods of 
design with an emphasis on building models. 
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